暂无评论
针对深层卷积神经网络在有限标记样本下训练时存在的过拟合和梯度弥散问题,提出一种从源模型中迁移知识训练一个深层目标模型的策略.迁移的知识包括样本的类别分布和源模型的低层特征,类别分布提供了样本的类间相关
提出一种基于细粒度图像和多属性融合的多任务卷积神经网络(MTCNN)。该网络主要包含几个关键环节,首先在网络中增加标签输入层,复制并分离输入的多个标签,通过全连接层与多个任务相匹配,增加与标签数量相应
为提高BP神经网络训练的预测能力,采用有助于提高BP神经网络逼近精度的Metropolis准则来克服BP神经网络训练学习过程中容易陷入局部极小值的问题;考虑到两类误分的代价不同,利用两个惩罚系数C1和
一种改进的BP神经网络算法,袁健,张文霞,为减少BP算法迭代次数并提高收敛速度及跳出局部最小,本文提出改进梯度法与DFP变尺度算法相结合进行权值修正的方法,在误差寻优初�
期刊论文:一种采用神经网络实现解扩的扩频系统
提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升
常用的神经网络是通过固定的网络结构得到最优权值,使网络的实用性受到影响。引入一种基于方向的交叉算子和禁忌变异算子,同时把禁忌算法(TS)引入标准遗传算法,结合标准遗传算法和禁忌算法的优点,提出一种优化
线性神经网络,BP神经网络,Hopfield神经网格,Elman神经网络,RBF神经网络;在模型应用模块中实现了六种实际应用:RBF网络的船用柴油机故障诊断,BP网络的齿轮箱故障诊断,SOM网络的回热
一种用生长型神经网络控制倒立摆的方法,一种生长型神经网络的倒立摆控制方案
一种基于神经网络的内模控制方法及其应用,希望对大家有用
暂无评论