针对传统离散粒子群算法求解背包问题早熟收敛、精度低等缺点提出一种解决背包问题的双尺度变异离散粒子群算法。利用对当前最优解进行双尺度速度变异,可以实现提高算法局部最优解搜索能力的同时,保持算法的全局搜索能力和逃出局部极值的能力。在算法初期利用粗尺度速度变异可使粒子快速定位到最优解区域,算法后期则通过逐渐减小的细尺度变异可提高算法最优解的精度。粒子位置初始化过程中,把采用贪心策略所得的结果作为一个粒子的初始位置。将改进算法与其他算法比较证明该算法不仅能够有效解决其他算法搜索能力差的问题,同时还提高了最优解的精度和收敛速度。