提出了一种用于空间配准和多目标跟踪(MTT)的扩展产品多传感器基数化概率假设密度(PM-CPHD)滤波器。 目标的数量和状态以及传感器的偏差是通过这种方法联合估算的,而无需数据关联。 蒙特卡罗(MC)仿真结果表明,所提出的方法(i)的性能优于(i),尽管在计算上要比用于联合空间配准和MTT的扩展多传感器PHD滤波器要好; (ii)优于多传感器联合概率数据关联(MSJPDA)过滤器,该过滤器在杂波相对密集时也适用于联合空间配准和MTT。