为克服BP算法易陷入局部最小的缺点,同时为减少样本数据维数,提出一种基于主成分分析(PCA)的遗传神经网络方法。通过降维和去相关加快收敛速度,采用改进的遗传算法优化神经网络权值,利用自适应学习速率动量梯度下降算法对神经网络进行训练。MATLAB仿真实验结果表明,该方法在准确性和收敛性方面都优于BP算法,应用于入侵检测系统中的检测率和误报率明显优于传统方法。