shap:一种游戏理论方法来解释任何机器学习模型的输出 源码
SHAP(SHapley Additive exPlanations)是一种游戏理论方法,用于解释任何机器学习模型的输出。 它使用博弈论中的经典Shapley值及其相关扩展将最佳信用分配与本地解释联系起来(详细信息和引文,请参见)。 安装 Shap可以从或 安装: pip install shap or conda install -c conda-forge shap TreeExplainer的树集成示例(XGBoost / LightGBM / CatBoost / scikit-learn / pyspark模型) 尽管SHAP可以解释任何机器学习模型的输出,但我们已经为树集成方法开发了一种高速精确算法(请参见)。 XGBoost , LightGBM , CatBoost , scikit-learn和pyspark树模型支持快速的C ++实现: import xgboost import shap # load JS visualization code to notebook shap . initjs () # train XGBoost model X , y
文件列表
shap:一种游戏理论方法来解释任何机器学习模型的输出
(预估有个442文件)
logo.ai
248KB
shap_logo_scratch.ai
218KB
make.bat
8KB
bootstrap.min.css
98KB
style.css
1KB
trial_data2_3_3_2019.csv
139KB
tree_explainer.bib
464B
treeshap_arxiv.bib
372B
shap_nips.bib
499B
nature_bme.bib
495B
暂无评论