通过将多类支持向量机作为分类器,运用Dempster-Shafer理论等信息融合方法对分类结果进行融合,实现对小样本的分类。主要采用对多类支持向量机的分类结果进行求和后取最大值、Dempster-Shafer理论以及使用Dempster-Shafer理论后第二次使用支持向量机三种方式进行融合。由于支持向量机本身是适用于小样本的机器学习算法,Dempster-Shafer理论又可以较好地处理不确定性,两者的结合可以较好地处理小样本分类问题,并提高最终的分类精度。实验结果表明,提出的几种融合策略确实可以在小样