cnn图像分类.通过已有的大量的花卉图片素材编写卷积神经网络对花卉图片训练集进行训练并且将训练后所得模型存放在指定文件夹.再编写一个简洁的python图形的用户交互界面实现图片的选择根据训练出来的神经
卷积神经网络经典结构,yannlecun的LeNet与Alex的AlexNet、以及网络中公式的推导证明,绝对是学习卷积神经网络的必备,一起学习,加油!
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运
自动调制识别在认知无线电、智能解调器、电子侦察等各种民用及军事应用中扮演重要角色。自动调制识别属于分类问题,常见的方法有KNN、DT、SVM、CNN。为了提高自动调制识别的准确度,基于GNU Radi
伪装人脸识别在刑侦安防领域有着巨大的应用价值。针对现阶段对伪装人脸识别的研究较少、算法鲁棒性不强等缺点,提出了基于深度神经网络的伪装人脸识别算法。改进了SqueezeNet网络模型,并将其与FaceN
注意是基于matlab编写的。本代码简单好用,适合新手和有一定matlab基础的同学
卷积神经网络人脸识别python代码,附带讲解的ppt,txt中有资源链接。
用卷积神经网络CNN数字识别,CPU多线程
此资源用keras和tensorflow编写,python代码。资源库无需准备,准确度能达到0.98。
针对传统基于机器学习的流量分类方法中特征选取环节的好坏会直接影响结果精度的问题,提出一种基于卷积神经网络的流量分类算法。首先,通过对数据进行归一化处理后映射成灰度图片作为卷积神经网络的输入数据,然后,
用户评论