通过对小电网负荷数据的特点分析,将时间序列处理、混沌理论和神经网络理论相结合提出了一种基于混沌神经网络理论的电力负荷预测模型。利用Matlab对实际数据进行了仿真计算。通过实例计算,并和不用相空间重构的神经网络的负荷预测算法的各种误差指标的分析比较说明,利用相空间重构对历史数据序列进行拆分或重构可以提高负荷预测的精度。