提出了一种利用深度神经网络的合成孔径雷达图像部分遮挡目标的特征提取和目标识别新方法.该方法首先对合成孔径雷达图像进行预处理,然后提取预处理后合成孔径雷达目标的小波域低频子带图像作为训练数据,最后利用深层稀疏编码模型进一步提取合成孔径雷达遮挡目标的有效特征向量作为目标的特征以完成目标识别.采用MSTAR数据库中的3类目标进行目标遮挡模拟及识别实验.结果表明,新方法可以综合利用遮挡目标的局部和整体结构信息以提高目标的正确识别率,是一种有效的合成孔径雷达遮挡目标特征提取和目标识别方法.