暂无评论
提出了求解函数优化问题的GAAA算法。该算法是基于遗传算法和蚂蚁算 法的混合算法。其基本思路是算法前过程采用遗传算法,充分利用遗传算法的快 速性、随机性、全局收敛性,其结果是产生有关问题的初始信息素分
Intelligent Ant Colony Algorithm Intelligent Ant Colony Algorithm and Its Application
蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。解决优化问题的基本思路为:用蚂蚁的行走路径表示
不确定条件下的优化问题更贴近真实世界环境,因而日益受到广泛关注。综述了蚁群优化在求解一组不确定条件下的组合优化问题,即随机组合优化问题方面的应用。首先介绍了不确定条件下组合优化问题的概念分类模型,给出
蚁群算法是优化领域中新出现的一种仿生进化算法,该算法具有并行、正反馈和启发式搜索等特点,但搜索时间长、易陷入局部最优解是其突出缺点。旅行Agent问题是一类复杂的组合优化问题,目的在于解决移动Agen
蚁群算法求解带时间窗的配送路径问题.caj
多重序列比对是生物信息学特别是生物序列分析中一个重要的基本操作。提出求解多重序列比对问题的蚁群算法,利用人工蚂蚁逐个选择各个序列中的字符进行配对。在算法中,蚂蚁根据信息素、字符匹配得分以及位置偏差等信
粗糙集的属性约简是一个NP难问题,获得较为高效的算法是研究的主要目的。针对传统的粗糙集属性约简算法效率不高、速度不快的问题,提出基于相关系数和条件信息熵的属性约简算法,把决策表的非核属性约简过程转化为
描述了Job-shop调度问题,研究遗传算法和蚁群算法在解决Job-shop问题中的优点和不足,融合遗传算法和蚁群算法设计了遗传蚁群算法以求解Job-shop调度问题,并对算法进行了仿真实验,通过与遗
Ant colony basic algorithm source program for solving traveling salesman problem
暂无评论