暂无评论
利用光纤扩径腰椎熔接技术, 分别对长为4.5 cm单模光纤的两端进行扩径, 形成了球形-单模-球形结构的新型马赫-曾德尔干涉仪(MZI)。基于MZI构造了一种可调谐多波长自激布里渊掺铒光纤激光器。将其
掺铒光纤激光器(EDFL)从频域的角度可以分为单纵模(SLM)掺铒光纤激光器与多纵模(MLM)掺铒光纤激光器。MLM-EDFL 属于复杂的高维动力学系统,比SLM-EDFL 拥有更多的自由度与更复杂的
基于机械剥离方法,即通过胶带反复剥离高定向热解石墨,制备得到少层石墨烯,并将其作为可饱和吸收体实现了被动谐波锁模掺铒光纤激光器。在抽运功率约135 mW 时,获得了中心波长1568.3 nm,脉冲宽度
利用级联的受激布里渊效应,自激发布里渊掺铒光纤激光器可以实现常温下的多波长激光输出。通过在自激发掺铒光纤激光器中引入一个高双折射萨尼亚克(Sagnac)环形滤波器,调节萨尼亚克环形滤波器的偏振控制器(
高双折射保偏光纤和萨尼亚克环构成的萨尼亚克(Sagnac)梳状滤波器的透射谱具有很好的可调特性。将这种滤波器和掺铒光纤环形腔结合设计了一种新颖的波长数可切换的光纤激光器。通过仔细调节梳状滤波器内的两个
提出一种基于半导体光放大器(SOA)的光纤环形激光器, 在一定范围内可以实现激光的单频输出, 同时在该激光器中发现一种新的脉冲不稳定现象, 这种不稳定现象与电流调节方向有关。分析和对比实验表明, 产生
设计了一种新型的闭环双向三激光器混沌保密通信系统,驱动激光器基于延时外光反馈,两个参数完全相同的响应激光器在自身延时反馈和驱动激光器的驱动下实现混沌同步。建立了相应的理论模型,研究了系统的分岔特性、同
通过分析氦氖激光器在光反馈下的混沌动力学特征,提出了氦氖激光器混沌反馈相位控制方法,并建立了激光混沌反馈相位周期控制下的动力学方程和物理模型。选取适当的反馈系数,加入相位控制器控制反馈光的相移,通过对
提出了半导体激光器混沌相位共轭反馈(PCF)控制方法,建立了相位共轭反馈控制条件下激光器电流激发混沌的物理模型,发现其混沌控制物理机制是相位共轭反馈影响改变了激光器非线性增益和线宽增强因子特性,控制了
提出并实验验证了一种稳定的单纵模窄线宽环形腔掺铥光纤激光器,通过使用特殊的子环腔和自制的光纤布拉格光栅,实现了稳定的单纵模激射和窄线宽输出。子环腔由3个互相连接的光耦合器组成,用来抑制密集的多纵模和跳
暂无评论