医疗领域,许多疾病的诊断依赖高倍数显微镜对细胞等微观物体的观测。但由于高倍数显微镜价格昂贵,操作复杂,且高倍数细胞显微图像重建工作存在低、高倍数显微图像之间图片风格不统一细胞图像清晰度不致和训练数据不匹配等问题。为此,提出高倍数细胞显微图像生成式对抗网络。将全新激活函数引入Cyclean网络,在生成器中添加新的残差密集块并去掉BN层。同时为确保生成图像真实可信,在生成器训练过程中考虑细节感知损失。实验结果表明,该方法在保留低倍数显微图像基本信息的基础上,能够对高倍数显微图像细节进行有效的还原。