迁移学习问题与方法研究 随着数据规模和计算资源的快速增长,机器学习在理论和实践两方面都取得了长足进展。传统机器学习方法通常依赖于数据的生成机制不随环境改变这一基本假设。然而在机器学习的各种应用领域中,如大数据分析、自然语言处理、计算机视觉、生物信息学等,上述假设往往因为过于严格而难以成立。如何分析和挖掘非平稳环境中的大规模
Learning transferable features with deep adaptation networks.pdf Learning transferable features with deep adaptation networks.pdf,仅能供参考