Ta上传的资源 (0)

针对邮件所含信息的模糊性和合法邮件与垃圾邮件错分代价的不对称性提出了基于双隶属度模糊支持向量机的邮件过滤方法,通过对每个样本赋予不同的双隶属度,得到最优分类器,提高了邮件过滤的正确率。经仿真实验证明,该方法能够有效降低将合法邮件误判为垃圾邮件,而且有很高的正确率等特点。

提出了一种基于后验概率的加权模糊支持向量机.在模糊支持向量机中引入样本后验概率加权系数后,得到的样本点的隶属度在减弱噪音及孤立点对支持向量机分类的影响的同时,不影响支持向量对分类超平面的作用.实验结果证明,在抗击孤立点和噪音点的干扰方面,该法取得了很好的效果,提高了支持向量机分类的泛化能力和应用范围

提出基于最优分类标准的核学习方法,这个标准类似于线性鉴别分析和核Fisher判别式。并把此算法应用于模糊支持向量机多类分类器设计上,在ORL人脸数据集和Iris数据集上的实验验证了该算法的可行性

常规支持向量机应用到高光谱图像分类中有较好的分类效果,但它对训练样本内部的噪声和孤立点特别敏感,在一定程度上影响了支持向量机的分类性能,针对该问题,引入了模糊支持向量机(FSVM),并且利用灰色关联分析代替模糊隶属度的求解,将这种基于灰色关联分析的模糊支持向量机与一对多算法相结合,解决了多类高光谱图

提出了一种应用于基因分类的模糊最小二乘支持向量机方法,通过设置模糊隶属度改变分类中样本的贡献属性。该方法不仅考虑了样本与类中心点的距离关系,还充分考虑样本与样本之间的关系,减弱噪声或野值样本对分类的影响。采用美国威斯康星乳腺癌数据和皮马印第安人糖尿病数据进行实验检测,均取得了很好的效果。

提出一种基于AdaBoosting算法的组合支持向量机(SVM)模型.该方法在贝叶斯分析的基础上,利用样本概率初始化惩罚系数,依据回归过程中的损失函数更新惩罚系数权重,使得SVM训练模型有强、弱之分,突出一些重要样本的作用,以提高模型的估计精度和泛化能力.仿真结果表明,依据该方法建立的组合模型明显改

提出了一种基于模糊核聚类的多类支持向量机分类方法。支持向量机的分类精度和分类速度取决于树结构,新方法利用模糊核聚类生成模糊类,并结合基于二叉树的多类支持向量机分类算法实现多类分类。