Ta上传的资源 (0)

给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是简单地分看,其原则是使正例和反例之间的间隔最大。学习的目标是在特征空间中找到一个分类超平面wx+b=0,分类面由法向量w和截距b决定

如果我们的正常的样本分布如下图左边所示,之所以说是正常的指的是,不是上面说的那样由于某些顽固的离群点导致的线性不可分。它是真的线性不可分。样本本身的分布就是这样的,如果也像样本那样,通过松弛变量硬拉一条线性分类边界出来,很明显这条分类面会非常糟糕。那怎么办呢?SVM对线性可分数据有效,对不可分的有何

二分k均值(bisecting k-means)算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二。之后选择能最大程度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。以此进行下去,直到簇的数目等于用户给定的数目k为止。

K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了。它采用测量不同特征值之间的距离方法进行分类。它的思想很简单:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别

对于一个问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题; 2)通过最大似然、最大后验概率或者最小化分类误差等等建立模型的代价函数,也就是一个最优化问题。找到最优化问题的解,也就是能拟合我们的数据的最好的模型参数; 3)然后我们需要求解这个代价函数,找到最优解