支持向量机(SVM)是在统计学习理论基础上发展而来的一种新的通用学习方法,较好地解决了有限样本的学习分类问题。用支持向量机的分类算法,选取不同的核函数,构造了支持向量机的不同分类器,并将其应用于冠心病的预测诊断。仿真结果表明,非线性的支持向量机取得了较高的准确率,支持向量机在早期冠心病的诊断中有很大的应用潜力。