针对Haar-like特征的缺陷以及AdaBoost算法存在训练耗时的问题,提出一种基于协方差特征的改进AdaBoost人脸检测算法。该方法用协方差特征代替Haar-like特征进行特征提取;然后使用特征裁剪和动态权重裁剪相结合的裁剪AdaBoost算法,训练得到基于协方差特征的强分类器。实验结果表明,相对于基于Haar-like特征的AdaBoost算法,该算法性能没有明显退化且很大程度上提高了训练速度。