差分隐私保护通过添加噪声使数据失真,从而起到保护隐私的目的,对于一个严格定义下的攻击模型,其具有添加噪声少、隐私泄露风险低的优点。介绍了差分隐私保护的理论基础和最新研究进展,详细阐述了分类、聚类等差分隐私学习方法的最新研究情况,介绍了一个差分隐私保护的应用框架PINQprivacyintegratedqueries,并对未来的研究发展方向进行了展望。