针对移动社交网络迅猛发展带来的发布轨迹隐私泄露问题,提出了一种个性化的轨迹保护方案。根据个体个性化的隐私保护需求差异,对不同个体采用了不同的保护准则,这样可以解决传统隐私保护下过度保护及轨迹效用低等问题。给出k敏感轨迹匿名和(k,p)敏感轨迹匿名等重要的隐私保护定义,并利用Trie树的构造、剪枝、重构等技术实现了个体的个性化隐私保护。通过在真实数据集上的实验分析,证明该个性化方案比现存隐私保护方案在轨迹位置损失率方面性能更优,计算延时较低且效率更高。