为解决高质量的轮廓提取算法计算复杂、实时性差的问题,基于GPU并行计算架构提出了一种针对高质量的轮廓提取算法——Pb(probabilityboundary,概率轮廓)提取算法的高效并行计算方法。重点讨论了如何利用多计算单元加速计算最耗时的梯度计算部分。详细介绍了多方向直方图并行统计机制及χ2并行计算中访存冲突避免机制。对比实验表明,在GPU上基于该并行方法的轮廓提取相比传统CPU方式具有明显加速效果,且随着图像分辨率变大,加速效果更加明显,例如图像大小为1024×1024时可获得160倍的加速;此外,基于伯克利标准测试集验证了该并行方法可保持原有算法的计算准确度。为大规模图像数据智能分析中的轮廓提取提供了快速、实时的计算方法。