TLD(tracking-learning-detection)跟踪算法在目标作平面外旋转、快速移动和非刚性形变的情况下易跟踪失败,而核相关滤波器(kernelizedcorrelationfilters,KCF)跟踪算法可以有效应对上述跟踪情景但缺乏跟踪失败恢复机制,导致目标重新出现后无法继续跟踪。针对以上问题,通过有效结合这两种算法,提出一种基于TLD框架下的核相关滤波器跟踪检测算法。在跟踪模块中融入颜色特征,进一步增强算法的整体跟踪性能。通过在不同视频序列上进行对比实验,结果表明,与原算法相比,改进后的算法可以长时间准确地跟踪目标,并具有更高的成功率。