针对传统的基于神经网络文本分类算法收敛速度慢等缺点,在分析了文本分类系统的一般模型,以及在应用了互信息量的特征提取方法提取特征项后,提出了一种基于样本中心的径向基神经网络文本分类算法;并引入了聚类算法的核心思想,改进误差反向传播神经网络分类算法收敛速度较慢的缺点。实验结果表明,提出的改进算法与传统的BP神经网络分类算法相比,具有较高的运算速度和较强的非线性映射能力,在收敛速度和准确程度上也有更好的分类效果。