主动学习已被证明是提升基于内容图像检索性能的一种重要技术。而相关反馈技术可以有效地减少用户标注。提出一种主动学习算法,带权Co-ASVM,用于改进相关反馈中样本选择的性能。颜色和纹理可以认为是一张图片的两个充分不相关的视图,分别计算颜色和纹理两种特征空间的权值,并在两种特征空间上分别进行SVM学习,对未标注样本进行分类;为了减少反馈样本的冗余,提出一种K-means聚类的主动反馈策略,将未标注样本返回给用户标注。实验表明,该图像检索方法有较高的准确性,并且有不错的检索效果。