针对光照、表情、姿态、遮挡等变化显著影响人脸识别系统性能的问题,提出了基于限制对比度自适应直方图均衡化(CLAHE)的低频离散余弦变换(DCT)系数重变换算法。将图像划分成多个互不重叠的局部小块,使用CLAHE对每个局部小块进行局部对比拉伸以实现去噪,通过缩减适当数目的低频DCT系数来消除人脸图像中的光照变化;利用核主成分分析进行特征提取,采用K-最近邻分类器以完成最终的人脸识别。在ORL、扩展YaleB和AR人脸数据库上的实验验证了所提算法的有效性和鲁棒性,实验结果表明,相比其他几种较为先进的人脸识别技术,所提算法取得了更高的识别率,同时大大降低了识别所用时间。