多目标进化算法的研究主要集中于搜寻全局最优解。在现实中,环境不是一成不变的,需找到抗干扰能力强的鲁棒解。多目标鲁棒最优化问题的研究较少,主要归结于环境的不确定性和缺乏合适的测试函数。针对不同特性测试函数,通过实验检验了在不同干扰下算法的性能变化情况。实验结果表明,存在干扰的情况下,原来的测试函数不再适用,需构造鲁棒测试函数。