由于支持向量机(SVM)在处理小样本、高维数及泛化性能强等方面的优势,提出了一种基于投影寻踪(PP)和支持向量机的模式分类方法。利用PP方法把高维数据转换到低维子空间,同时用加速遗传算法获得最佳投影方向和投影值,揭示了高维数据的结构特征,然后在低维空间中用SVM对特征向量进行分类识别,并将其应用到银行信贷风险评估中。选用2005年度80家贷款申请企业的数据样本,对该模型进行验证,通过与神经网络模型的比较,证实了该方法用于模式识别的有效性及优越性。