针对FP-growth算法时空效率低的问题,提出了改进的FP-tree构造算法。该算法利用动态结点插入技术构造FP-tree,能有效减小模式树的宽度,达到压缩空间的目的;同时,该算法提高了前缀路径的共享性,提高了算法的效率。针对密集型数据的频繁模式完全集难以挖掘的问题,文中提出了IFPmax最大频繁模式挖掘算法,在改进的IFP-tree结构的基础上,利用结点的秩进行预判断,充分利用最大频繁模式的性质对已经存在的结点进行标记,有效避免了节点的冗余遍历,提高了最大频繁模式挖掘算法的效率。实验表明,在不同的基准数据集上文中提出的算法更有效,避免了节点的冗余遍历,使最大频繁模式挖掘算法效率更高。