针对标准的概率假设密度(PHD)滤波算法在杂波环境下对群目标跟踪误差较大的问题,提出一种基于自适应遗传PHD滤波的多群目标跟踪方法。该方法在PHD粒子滤波的基础上,利用选择概率减少了新生粒子的数量。为了有效抽取交叉粒子,在时间更新阶段引入当前量测与群目标间的马氏距离。为了提高预测粒子的鲁棒性,推导出自适应交叉与变异操作方案。仿真实验表明,所提出的方法能有效跟踪杂波环境下的多群目标,具有目标总数估计稳定、运动状态估计准确的特点。