暂无评论
针对存在3D场景遮挡的航拍视频运动小目标跟踪问题,提出一种基于多视角航拍配准的运动小目标检测和跟踪算法。该算法首先对图像序列间隔采样,利用Harris检测器提取全局特征点,通过Delaunay三角网对
现实中目标在被长期跟踪时容易发生形变、遮挡、光照干扰以及其他问题,现有跟踪算法虽能解决该系列问题但算法计算量巨大,导致跟踪系统实时性能较差,很难应用于实际场合。因此,准确快速跟踪目标成为近年来非常有挑
在研究融合运动目标位置预测的Mean Shift跟踪算法和双目立体视觉中的空间点定位算法的基础上,基于双目视觉设计了双目立体视觉运动目标跟踪和测量系统,并在所进行的跟踪与测量实验中,提取了运动目标质心
TLD(Tracking-Learning-Detection)算法是一种新颖的单目标长时间视觉跟踪算法,在给定极少的先验知识的情况下,能够迅速地学习目标特征并进行有效的跟踪。TLD算法中跟踪器每次在
针对采用单一特征建立的动态空间模型与实际系统差距较大,从而使估计误差增加的问题,通过将系统的状态参数引入颜色特征模型中,与颜色特征参数一起构成系统状态空间向量,提出了一种联合颜色状态特征的优化目标跟踪
为提高复杂场景下运动目标检测的完整性和准确性,提出了一种多特征结合的运动目标检测方法。提出了一种自适应的高斯混合建模算法对颜色特征进行建模;通过滞后多阈值建模的方法,同时利用颜色和改进的局域二值模式纹
针对混合高斯和多模态均值模型在阴影、噪声、扰动、计算量和存储空间等方面的优缺点,提出一种基于区域纹理的目标检测方法。该方法分析场景纹理分布,制定区域复杂度分类准则,对复杂区域采用混合高斯,对简单区域采
基于背景更新的运动目标分割方法,程娟,,背景差法是视频图象序列中运动目标分割的重要方法,为了解决背景中光照变化等问题,对每个被判为背景的象素建立单高斯模型,提出
为了提高复杂场景中目标跟踪的稳健性,解决由光照变化、目标形变、尺度变化和遮挡等导致的目标跟踪失败问题,提出一种自适应特征融合的多尺度核相关滤波目标跟踪算法。该算法首先通过2种不同的特征分别训练2个核相
基于二维坐标的多运动目标跟踪,在跟踪过程中由于目标相互遮挡,算法无法分清各个运动目标,导致跟踪目标失败。而三维坐标具有深度信息,利用目标遮挡前后坐标的不突变性能很好地分清各个目标,为此提出基于三维坐标
暂无评论