针对高维特征向量存在的最近邻匹配正确率低的问题,提出了一种基于SURF和快速近似最近邻搜索的图像匹配算法。首先用Fast-Hessian检测子进行特征点检测,并生成SURF特征描述向量;然后通过快速近似最近邻搜索算法得到初匹配点对,再对得出的单向匹配结果进行双向匹配;最后采用鲁棒性较好的PROSAC算法进一步剔除误匹配点对。实验证明了该算法不仅提高了SURF算法匹配的正确率,还保证了算法的实时性。