针对稀疏表示中匹配追踪算法计算复杂度过大的问题,提出了基于冗余字典原子相关性的匹配追踪算法。该算法利用相邻迭代过程中匹配原子的相关性对冗余字典进行簇化,得到M个多原子集合(原子簇);每次迭代过程中利用LVQ神经网络的快速学习能力从原子簇中选取目标簇;最后在目标簇中选取匹配信号结构的若干原子进行信号的稀疏逼近。实验采用一维稀疏信号进行仿真,结果表明与匹配追踪算法相比,其逼近性能相近,同时稀疏分解速度大大提高。