提出了一种自适应的快速图像增强算法用于改善复杂光照下的人脸检测。算法对人脸图像的增强分为两步:动态范围压缩和细节增强。算法首先利用对数变换和非线性变换,增强图像阴暗区域的信息,同时对高光区域进行有效地抑制,然后利用反锐化掩模滤波对图像的细节进行增强。将各种增强算法应用于图像的预处理,结合Adaboost人脸检测算法,在YaleB人脸数据库上进行对比实验。实验结果表明,自适应快速图像增强算法能有效提高人脸检测率和降低误检率,具有比直方图均衡算法、单尺度Retinex算法和多尺度Retinex算法更好的性能。