分析了非线性PID控制器各部分参数对于误差的理想变化过程,构造出一种非线性PID控制器;整定参数较多时,传统的参数优化方法容易产生振荡和较大的超调量,在分析量子粒子群算法(QPSO)的基础上,引入了随机选择最优个体的思想,提出使用改进的量子粒子群算法(GQPSO)优化非线性PID控制器参数。将改进量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较。最后,通过典型传递函数实例,分别使用Z-N、PSO、QPSO方法和改进的量子粒子群算法进行了PID控制器参数优化设计,并对结果进行了分析。