论文研究基于混合算法的环形轨道RGV系统调度优化研究.pdf
针对自动化仓库中环形轨道RGV(有轨制导车辆)调度问题,以任务最短完成时间为目标,分析其主要影响因素。在此基础上提出路径最短和堵塞次数最少两个优化目标,并建立数学模型,设计基于规则的遗传算法求解。使用自适应的交叉变异概率代替传统遗传算法中的固定参数,改善遗传算法易陷入局部最优解的现象。同时,为解决多目标优化求解问题,提出了改进的自适应权重的求解方案。通过Matlab仿真实验分析比较算法性能,验证了算法的有效性。
针对自动化仓库中环形轨道RGV(有轨制导车辆)调度问题,以任务最短完成时间为目标,分析其主要影响因素。在此基础上提出路径最短和堵塞次数最少两个优化目标,并建立数学模型,设计基于规则的遗传算法求解。使用自适应的交叉变异概率代替传统遗传算法中的固定参数,改善遗传算法易陷入局部最优解的现象。同时,为解决多目标优化求解问题,提出了改进的自适应权重的求解方案。通过Matlab仿真实验分析比较算法性能,验证了算法的有效性。