鉴于传统的协同过滤推荐算法在处理冷启动和数据较稀疏的问题上表现不佳,提出一种将堆栈降噪自编码器(stackeddenoisingautoencodes,SDAE)与最近邻推荐方法相结合的混合SDAE推荐模型。使用逐层自编码的思想将极限学习机与降噪自编码器堆叠形成基于极限学习机(extremelearningmachine,ELM)计算的堆栈降噪自编码器的深度学习模型,最终用模型提取的抽象特征应用于最近邻算法预测打分。通过多组数据集上各种模型的实验结果表明,在稀疏度低于8%时,与余弦相似度模型和皮尔森相似度模型相比,混合SDAE推荐模型实验效果分别提高了11.3%和21.1%;与潜在矩阵