在Mumford-Shah模型基础上提出了一个改进的双模态图像分割算法。该算法基于图像局部化信息创建驱动曲线演化的能量,引入的配准项提高了曲线的演化速度,基于曲线演化竞争的数据拟合项,使得曲线能更稳定地收敛到一个全局静态最小值,且算法对水平集函数初始化位置不敏感。实验结果表明,改进的算法具有收敛速度快、分割结果稳定的特点,尤其在医学CT图像方面具有更强的分割能力,更高的稳定性。