将遗传算法与混沌算法相结合,提出了一种新颖的基于猫映射的混沌遗传算法(CGA),解释了猫映射的遍历性,分析了猫映射的混沌分布优越性。该算法利用猫映射的初值敏感性扩大搜索范围,利用猫映射的遍历性进行混沌变量的优化搜索,从而减少了数据冗余,保持了种群多样性,有效地解决了局部收敛问题。理论分析和数值仿真表明,该算法具有更好的收敛性能。