针对一类非线性系统建立精确机理模型困难、且仅用单一模型进行故障检测与容错不甚可靠等问题,提出一种基于数据驱动的多模型传感器故障软闭环容错控制方法,并对非线性系统中卡死、恒增益、恒偏差等常见传感器故障进行了研究。首先采用历史数据建立了系统的RBF神经网络、最小二乘支持向量机和核部分最小二乘三种预测模型,并基于序贯概率比检验算法同时以多个模型产生的残差对传感器进行故障检测;当检测出传感器发生故障时,则用系统多个预测模型的融合值代替传感器的输出,从而以软闭环方式实现对传感器故障的容错控制。最后将所提出的方法应用于一阶水箱液位控制系统,实验结果表明多残差与序贯概率比检验算法的结合能够可靠诊断传感器故障