移动机器人在复杂环境中移动难以得到较优的路径,基于马尔可夫过程的Q学习(Q-learning)算法能通过试错学习取得较优的路径,但这种方法收敛速度慢,迭代次数多,且试错方式无法应用于真实的环境中。在Q-learning算法中加入引力势场作为初始环境先验信息,在其基础上对环境进行陷阱区域逐层搜索,剔除凹形陷阱区域[Q]值迭代,加快了路径规划的收敛速度。同时取消对障碍物的试错学习,使算法在初始状态就能有效避开障碍物,适用于真实环境中直接学习。利用python及pygame模块建立复杂地图,验证加入初始引力势场和陷阱搜索的改进Q-learning算法路径规划效果。仿真实验表明,改进算法能在较少的迭代