针对遗传算法存在的局部搜索能力差、早熟收敛和进化后期收敛速度慢的问题,提出了一种改进精英策略的个体优势遗传算法(IndividualAdvantagesGeneticAlgorithm,IAGA)。IAGA通过在精英子种群更新中不断增加精英个体数量和多样性,在保持算法全局收敛性的同时,增强算法在最优解区域的局部搜索能力。引入半粒子群变异算子,提高了算法前期向全局最优解靠拢的速度;引入个体优势算子,提高种群优势个体的多样性,有效改善了进化后期收敛速度慢的问题;与已有同类算法相比,平衡了收敛速度和全局收敛性之间矛盾的同时,进一步提高了收敛速度和精度。