为了减少高维对计算成本的影响,同时提取有利于分类的判别特征,提出运用多线性主元分析(MPCA)与FLD相结合的方法进行掌纹识别。运用MPCA直接对掌纹张量进行降维和特征提取,低维特征向量作为FLD的输入,提取判别特征向量,计算特征向量间的余弦距离进行掌纹匹配。PolyU掌纹图像库的实验结果表明,与主元分析(PCA)、PCAFLD、二维主元分析(2DPCA)、独立元分析(ICA)和MPCA相比,该算法的识别率(RR)最高为9991%,特征提取和匹配总时间为0398s,满足实时系统的要求。