太阳黑子月均值是典型的混沌时间序列,具有较强的非线性和非平稳特征,能够反映太阳活动的真实水平。采用一种应用集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD)与径向基函数(RadialBasisFunction,RBF)神经网络组合的预测模型。通过EEMD将原始时间序列分解为若干个不同时间尺度的本征模态函数(IntrinsicModeFunction,IMF)分量,并对这些分量进行建模预测,再将各分量的预测值重构得到原始时间序列的预测值,这样不仅降低了算法的复杂性,而且有利于提高模态分量包含信息的物理意义。仿真结果表明,与经验模态分解