我们通过两种方法计算在有限温度和有限空间大小下1+1d的自由费米子的单间隔Rényi熵(复制分配函数):(i)在复制Riemann曲面上使用高能分配函数,以及(ii)在圆环上使用扭曲运算符。我们比较了有限结构的自旋结构的两个答案,这导致了更高类的Siegelθ函数和Jacobiθ函数之间的平凡拟议等效性。我们展示了该提案并提供了充分的证据。可以用雅可比形式优雅地写出结果表达式。此后,我们认为,通过对所有自旋结构求和的高阶计算得出了模不变式自由费米子理论(例如伊辛模型和狄拉克CFT)的正确Rényi熵。结果满足了模协方差,热熵关系和Bose-Fermi等价物的物理检验。