通过对Web网站的日志进行聚类分析,目的是获取用户兴趣访问模式,进而为不同用户群体提供定制的个性化服务。针对原始CURE算法在代表点选择的随机性、不能充分体现用户兴趣偏好方面存在的问题,提出了改进的用户聚类算法,根据用户兴趣的显著特征提取元素的主要属性进行预聚类,为小类合并提供合理的初始类集,实验结果证明了该方法有较好的聚类结果。