针对推荐算法中用户评分矩阵维度高、计算量大的问题,为更加真实地反映用户本身评分偏好,提出一种结合用户聚类和评分偏好的推荐算法。先利用PCA降维和K-means聚类对用户评分矩阵进行预处理,在最近邻选取方法上,添加用户共同评分数量作为约束,利用用户和相似簇的相似度对相似簇内评分加权求和生成基本预测评分;再综合用户评分偏置和用户项目类型偏好,建立用户评分偏好模型;最后通过多元线性回归确定每部分的权重,生成最终的预测评分。对比实验结果表明,新算法能更真实地反映用户评分,有效减少计算量并提高推荐系统的预测准确率,更好地满足用户对于推荐系统的个性化需求。