针对手势识别的手区域分割、手势特征提取和手势分类的三个过程,提出了一种新的静态手势识别方法。改进了传统的RCE神经网络用于手区域的分割,具有更高的运行速度和更强的抗噪能力。依Freeman链码方向提取手的边缘到掌心的距离作为手势的特征向量。将上一步得到的手势特征向量作为RBF神经网络的输入,进行网络的训练和分类。实验验证了该方法的有效性和可行性,并用其实现了人和仿人机器人的剪刀石头布的猜拳游戏。