针对工业控制中普遍存在的大滞后现象,提出了一种将RBF神经网络算法和Smith预估补偿算法与传统的PID控制器相结合的智能RBF-Smith-PID控制策略。该方法利用RBF神经网络的在线学习、控制参数自整定能力,和Smith预估补偿对纯滞后系统的良好控制,有效地克服了常规PID控制的缺陷,提高了系统的鲁棒性和自适应性,对纯滞后系统起到了良好的控制。