提出一种基于多尺度稀疏表示的场景分类框架。首先从图像中提取多个尺度的局部特征,然后利用稀疏编码为每个尺度的特征单独学习相应的过完备字典;在图像表示阶段,为图像各尺度上的局部特征依据与其对应尺度的字典进行编码,并按照空间金字塔表示方法和特征各维最大汇总maxpooling对各尺度上的特征编码分别汇总;最后将不同尺度上汇总的特征串接,形成对图像最终描述的全局向量。在三个常用标准场景库上的分类结果表明,提出的算法由于利用了不同尺度特征间的互补关系,与采用单尺度特征的方法相比,性能有了显著提升。