模型选择以及如何进行组合是物流需求组合预测的关键,为了提高物流需求的预测精度,提出一种包容性检验和主成分分析相融合的物流需求预测模型(ET-PCA)。采用多个单一模型对物流需求进行预测,采用包容性检验选择最合理的单一模型,利用PCA对选择的单一模型预测结果进行组合,采用仿真实验对组合模型性能进行测试。结果表明,相对于传统组合模型,ET-PCA较好地解决了物流需求单一预测模型选择及组合问题,更加全面、准确描述了物流需求复杂的变化趋势,提高了物流需求的预测精度和效率,具有一定应用价值。