建立了机器人运动学模型,设计了基于Lyaponov稳定理论的轨迹跟踪控制器,该控制器的性能取决于其参数的大小。粒子群优化算法具有收敛速度快,需要调节的参数少等优点,但优化过程中容易发生“早熟”收敛,使优化陷入局部极小值。通过引入模拟退火算法、“交叉算子”和“变异算子”,提出了一种改进粒子群优化算法,对控制器的参数进行优化设计。最后,通过仿真计算,证明了该方法的有效性。